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CALCULATION OF SPIN CUTOFF PARAMETERS

*

USING MOMENT TECHNIQUES*

S. M. Grimes
Lawrence Livermore Laboratory

University of California
Livermore, California 94550

ABSTRACT

Spectral distribution methods are often applied to the calculation

of nuclear level densities. Ifwe require not simply the total number of

levels at each energy but also their distribution in spin, we need to know

the spin-cutoff parameter and its energy dependence. Recent calculations

of the spin-cutoff parameter have shown qualitative agreement with data.

Reasons for the remaining discrepancies will be discussed and procedures

for improving agreement between theory and experiment will be suggested.

*Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore Laboratory under contract number hJ-7405-ENG-48.



1. INTRODUCTION—

Bethel applied the central limit theorem to the distribution of states

as a function of angular momentum projection (JZ) and derived an expression

relating the number of levels of spin J at a specific energy to the total

number (of

expansion,

It is

projection

all J) at that energy. The fundamental parameter entering this

<J 2>%
z’

has come to be called the spin-cutoff parameter.

usual to define a state as ‘having a specific angular momentum

on the Z axis and a level as encompassing the (2J+T) degenerate

states. Denoting the number of states with angular momentum projection Jz

as N(JZ), we can express N(J), the number of levels of spin J, as

N(J) = M(J) - M(J+l).

This result follows from the fact that every level of spin J has a

state with each projection of angular momentum in the range -J ~Jz ~J.

Thus, M(J) is the number of levels with spin ~J and M(J+l) is the number

with spin > J+l. Clearly, the difference between these two is the number—

of levels of spin J.

Bethe assumed a Gaussian form for M(J), so that

‘o
M(J) = — exp

/
-J2

Go
202 (1)

where No is the total number of states and o(= <JZ2>%) is the spin-cutoff

parameter. Approximating the difference M(J) - M(J+l) byw]
‘J J=J+~,

we

obtain
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N(J) =

To generalize

J and E, one needs

If values for

this result for a level density as a function of both

to substitute N(E) for No and replace uwith a(E).

N(E) andU(E) are available, one may calculate p(E,J)

(2)

fromEq. (2). Traditionally, both N(E) and p(E,J) have been calculated

with the thermodynamic approach. 2 This method can easily be programmed

for a large computer and does not require large amounts of computer time.

It is limited to one-body Hamiltonians, however, and there is at least some

indication that the predicted spin-cutoff parameters 3 do not agree well

with data. To investigate the extent to which these discrepancies are due

to the omission of two-body effects, we must utilize spectral distribution

theory.

II. FORMALISM—

Use of the formalism of spectral distribution theory allows calculation

of level densities and

evaluation of operator

these necessarily have

basis of eigenvectors.

spin cutoff parameters. The method is based on the

traces in a shell model basis. Because of unitarity,

the same value as the corresponding traces in the

The values for the traces then allow an expansion

for the distribution of eigenvalues as a function of the parameters of

interest.

As an example, consider

energy. If the total number

the distribution of states as a function of

of states and the traces of H and H2 are
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known, then we can calculate

<< H >>
<H>=

N

2 2<< H >>
<H>=

N

4

where < > denotes expectation value, << >> denotes trace, and N is the

total number of states in the basis. Finally, we have for the distribution

of states p(E) the form

p(E) = N exp

K OH

-(E -< H >)2

2 u;

(3)

(4)

(5)

where OH = [.ti2>-<H,2]~
.

In a situation where we wish to determine P(E,J), two possible expansions

are possible, as seen in Fig. 1. Because the early work of Bethe involves

first an expansion of the distribution as a function of H and then an expan-

sion in JZ, this sequence has normally been followed. Some work in spectral

distributions has utilized an alternative scheme, in which the Jz expansion

is made first and then H (and Hz) are expanded in powers of JZ. This yields

a Gaussian for each value of J with a separate value of < H > and < H2 >.

A key question involves the adequacy of two moment expansions. Because

most of the trace calculations are carried out with the use of the propagator

4,5
approach, extending the calculations to higher moments has proved to be

a difficult task. Until more comparisons between results calculated with

only two moments and those including higher moments are available, the need

for higher moments will remain uncertain. Such comparisons6’7 as have been
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made, however, support the conclusion that higher moments of H, specifically

H3 and H4, do improve the agreement between calculation and experiment.

Adding powers of Jz higher than JZ2 produces smaller changes.

Ifwe make the usual Bethe expansion (i.e., H first and then Jz) and

postulate that the H distribution is rigorously Gaussian, then higher

moments in the Jz expansion would be included through a Hermite polynomial

expansion. More generally, we would allow both distributions to be non-

Gaussian in which case the appropriate polynomials for the expansion are

the characteristic polynomials defined as

fpv(x)P,(x) P(X) dx = ~uv

where p(x) is the level density as a function of the parameter x. Here x

would be H if we make the Bethe expansion or Jz if we Project on Jz first

and then H. Note that if P(X) is Gaussian, the PV(X) will be Hermite

polynomials. Explicit calculation of the Pv(x) involves use of traces of

order 2V in the operator x.

III. COMPARISON OF MOMENT EXPANSION RESULTS
NITH EXACT DIAGOilALIZATION CALCULATIONS

(6)

importance of higher moments in spectral distributionTo investigate the

expansions, it is necessary to

as the exact energy dependence

of these conditions are met in

system may be obtained from a diagonalization. The eigenvalues, in turn,

study systems where the higher moments as well

of the operators of interest are known. ‘Both

small systems, where the eigenvalues of the
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may

the

160

be used to calculate the moments and the exact energy dependence of

operators.

As an example, consider
21

Ne in a shell model basis consisting of an

core and five valence particles in the d5,2, s1,2 and d3,2 orbitals.

This generates 1113 levels (8580 states) of isospin T = 1/2, with spins

ranging from 1/2 to 19/2. The two body interaction is that of Chung and

Wildenthal.g

Fig. 2 shows a Gaussian expansion for the distribution of levels of

all spins compared to the exact values. Also indicated is the expansion

obtained with terms corresponding to moments as high as H8. Very small

discrepancies are seen for the Gaussian expansion, so the improvement

provided by the H8 expansion is modest.

If the state distribution is projected on the JZ axis, we obtain the

distribution shown in Fig. 3. Again, the Gaussian expansion provides an

excellent description of the distribution, with only slight improvement

resulting from the inclusion of the JZ4 term. Although the size of the

basis is small, this provides an impressive justification of Bethe’s assumption

in treating the JZ distribution as Gaussian.

Since we are interested in the distribution of levels as a function

of both J and E, it is important to check whether the Gaussian distribution

is equally appropriate for the levels

for two typical energy bins are shown

distribution for the whole basis, the

in a narrow energy range.

in Fig. 4. As in the case

Gaussian fit is quite good.

Results

of the

It therefore appears that in order to expand the level density as a

function of E and J, we require the energy dependence of<JZ2>, with the

I -6-



energy dependence of ZJZ4> of lesser interest. Fig. 5 shows the energy

dependence of JZ2 for the 21Ne system. Values of this parameter calculated
s n2from expansions based on the moments of H JZ for n = 0,1,2 (second order

expansion), for n = o-4, and for n = O-8. Clearly, the second
4

order expansion provides a poor fit, particularly in the low energy region

which is of most physical interest. Adding terms to produce a fourth order

expansion substantially improves the fit and virtually complete convergence

occurs for the eighth order fit.

Obtaining the necessary moments for such an expansion is a difficult

task. In a situation where the eigenvalues are known, of course, moments

of arbitrarily high order can be obtained easily. Since our primary interest

for level density calculations is in spaces which are too large for diagonali-

zation, we require alternative means of obtaining the moments. The propagator

22
approach is quite effective for moments as high as <JZ H >, but becomes

increasingly cumbersome for higher moments. An alternative procedure is

the representative vector method.6 This method is sufficiently new that the

21
only application of it has been to Ne, but it is expected to be quite useful

in very large spaces. It may also be used6 in obtaining moments for

configurations.

IV. CONFIGURATIONEXPANSIONS—

The increased difficulty of calculating moments of H higher than Hz

i
suggests that other possible means of improving the characterization of the

j

energy dependence of operators be investigated. An obvious possibility is
I
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to look at an expansion of the operator of interest in terms of configurations.

Even if we restrict our calculations to H and Hz, we can improve our represen-
0

tation of the energy dependence of an operator by evaluating the contributions

●
in terms of a number of Gaussians and sunwning them up.

For example, instead of calculating <H>, <HJZ2>, <H2JZ2>, <JZ2> and <Hz>

for the entire basis for 21
Ne, we could evaluate these separately for each

configuration, defined as a specific number of particles in each shell model

orbital. One such configuration, denoted 5 0 0, contains 5 nucleons in the

‘5/2; 0 ‘n ‘he ‘1/2 and 0 ‘n ‘he ‘3/2
orbitals; if all possible arrangements

of the five nucleons among the three orbitals are considered, there are a

total of 20 such configurations. Each of these will have components distributed

among a number of eigenstates, so it is appropriate to define a strength dis-

tribution for each configuration. Evaluation of<H>, <H*>, <JZ2>, ~<HJ 2> and

<H2JZ2> for the individual configurations allows the spin cutoff parameter

to be expressed as the sum of twenty Gaussians.

Comparison of this calculation with the values from a diagonalization

is presented in Fig. 6, taken from Ref. 10. The two moment expansion utilizing

configurations is seen to be superior to the two moment expansion for the

entire basis and about equal to the four moment expansion for the entire

basis. A six moment expansion for the entire basis is closer to the exact

values than the configuration expansion.

It may seem puzzling that a twenty Gaussian expansion is not dramatically

better, for example, than a four moment expansion in the entire basis. The

reason for the modest improvement is that the configuration distributions

6
are highly non-Gaussian. Particularly those configurations which lie either
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above or below the centroid of the entire distribution have tails which

extend into the central region. This skewing makes the Gaussian assumption

*
particularly poor for configurations, as in seen in Figs. 7 and 8. The entire

distribution, on the other hand, is very close to Gaussian. Inclusion of
●

a few additional moments of the Hamiltonian provides excellent convergence

for the spin cutoff parameter.

y. SUMMARY

Spectral distribution techniques can yield calculated values for the

spin cutoff parameter. The simplest calculations are those which include

moments of H no higher than Hz; these apparently provide only a fair repre-

sentation of the exact values. Better information is obtained from either a

configuration expansion or the inclusion of terms corresponding to additional

moments of H in the entire basis. Either of these alternatives will mean

some increase in complexity of the calculation; a choice between the two

approaches will probably be based on convenience and length of the calculation,

since either approach can yield accurate values for the spin cutoff parameter.
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FIGURE CAPTIONS

Fig. 1: Schematic representation of the methods of obtaining level densities
(a & b)

as functions of E and J from scalar traces. Figure la shows the

distribution as a function of E and J. The first projection method

2 1/2is to project on the E axis and calculate <J >
z

as a function of

E as shown in lb. An alternative technique is to project first on

on the JZ axis and then express <H> and <Hz> as functions of Jz also

shown in lb. In either case approximate values of p(E,J) can be

obtained from scalar traces of powers of H and JZ.

Fig. 2: Distribution of levels with energy for
21

Ne calculated in an sd

basis with the Chung-Wildenthalg interaction. The histogram

indicates the exact values (from a diagonalization); the fits

are a Gaussian (solid line) and an eighth order expansion (dot-

dashed line).

Fig. 3: Distribution of states as a function of Jz for 21Ne in an sd

basis. This encompasses 1113 levels or 8580 states (T = 1/2).

The dashed (--) and dot-dashed (*-) lines show JZ2 and JZ4

expansions, respectively, while the ● indicates the exact value.

Fig. 4: Distribution of states as a function of

basis in two energy bins. The A points

the energy bin between -38 and -40 MeV,

Jz for 21Ne in

indicate exact

while the dots

an sd

values in

indicate

the values for the bin between -28 and -30 MeV. Both JZ2 and JZ4

expansions are shown. The two body matrix elements of Chung and

Wildenthalg were used in the calculation.



Fig. 5:

Fig. 6:

Fig. 7:

Fig. 8:

Energy dependence of the spin cutoff parameter for 21
Ne calculated

in an sd basis with the Chung-Wildentha19 interaction. The A points

indicate the exact (diagonalization) results and the solid line,

dashed line and dot-dashed line denote the second order, fourth

order and eighth order expansions, respectively. The sixth order

expansion (not shown) is within 2% of the eighth order expansion.

Same as Fig. 5, except that the expansions are second order in

entire basis (dashed line) and second order in configurations

the

(dot-dashed line). The configuration expansion to second order is

almost identical to the whole basis expansion to fourth order (Fig. 5).

Strength distribution for the 041 configuration (four particles in

‘he s 1/2
and one in the d3,2 orbital) in 21Ne. The histogram shows

the exact (diagonalization) results, while the solid line and the

dot-dashed line denote Gaussian and eighth order expansions,

respectively. The deviations from a Gaussian form are evident.

The interaction used is that of Chung and Wildenthal. This result

is from Ref. 6.

Strength distribution for the 104 configuration (one particle in

‘he ‘5/2
and four in the d3,2 orbital) in 21Ne. Shown are Gaussian

and eighth order expansions. The non-Gaussian multiple peaking of

this distribution is typical of the configurations in this space.
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